An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing
نویسندگان
چکیده
[1] An assessment of aerosol-cloud interactions (ACI) from ground-based remote sensing under coastal stratiform clouds is presented. The assessment utilizes a long-term, high temporal resolution data set from the Atmospheric Radiation Measurement (ARM) Program deployment at Pt. Reyes, California, United States, in 2005 to provide statistically robust measures of ACI and to characterize the variability of the measures based on variability in environmental conditions and observational approaches. The average ACIN (= dlnNd/dlna, the change in cloud drop number concentration with aerosol concentration) is 0.48, within a physically plausible range of 0–1.0. Values vary between 0.18 and 0.69 with dependence on (1) the assumption of constant cloud liquid water path (LWP), (2) the relative value of cloud LWP, (3) methods for retrieving Nd, (4) aerosol size distribution, (5) updraft velocity, and (6) the scale and resolution of observations. The sensitivity of the local, diurnally averaged radiative forcing to this variability in ACIN values, assuming an aerosol perturbation of 500 cm 3 relative to a background concentration of 100 cm , ranges between 4 and 9 W m . Further characterization of ACI and its variability is required to reduce uncertainties in global radiative forcing estimates.
منابع مشابه
The Marine Stratus/Stratocumulus Experiment (MASE): Aerosolcloud relationships in marine stratocumulus
[1] The Marine Stratus/Stratocumulus Experiment (MASE) field campaign was undertaken in July 2005 off the coast of Monterey, California to evaluate aerosol-cloud relationships in the climatically important regime of eastern Pacific marine stratocumulus. Aerosol and cloud properties were measured onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircr...
متن کاملEffect of Cloud Fraction on Near-Cloud Aerosol Behavior in the MODIS Atmospheric Correction Ocean Color Product
Characterizing the way satellite-based aerosol statistics change near clouds is important for better understanding both aerosol-cloud interactions and aerosol direct radiative forcing. This study focuses on the question of whether the observed near-cloud increases in aerosol optical thickness and particle size may be explained by a combination of two factors: (i) Near-cloud data coming from are...
متن کاملWhere Aerosols Become Clouds - Potential for Global Analysis Based on CALIPSO Data
This study evaluates the potential to determine the global distribution of hydrated aerosols based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data products. Knowledge of hydrated aerosol global distribution is of high relevance in the study of the radiative impact of aerosol-cloud interactions on Earth’s climate. The cloud-aerosol discrimination (CAD) score ...
متن کاملMapping the Twilight Zone - What We Are Missing between Clouds and Aerosols
Scientific understanding of aerosol-cloud interactions can profit from an analysis of the transition regions between pure aerosol and pure clouds as detected in satellite data. This study identifies and evaluates pixels in this region by analysing the residual areas of aerosol and cloud products from the Moderate Resolution Imaging Radiometer (MODIS) satellite sensor. These pixels are expected ...
متن کاملAerosol Microphysical and Radiative Effects on Continental Cloud Ensembles
Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the mic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009